Поиск в словарях
Искать во всех

Физический энциклопедический словарь - твёрдоетело

 

Твёрдоетело

твёрдоетело
агрегатное состояние в-ва, характеризующееся стабильностью формы и хар-ром теплового движения атомов, к-рые совершают малые колебания вокруг положений равновесия. Различают крист. и аморфные Т. т. Кристаллы характеризуются пространств. периодичностью в расположении равновесных положений атомов (см. Дальний и ближний порядок). В аморфных телах атомы колеблются вокруг хаотически расположенных точек. Устойчивым состоянием (с миним. внутр. энергией) Т. т. является кристаллическое. С термодинамич. точки зрения аморфное тело находится в метастабильном состоянии и с течением времени должно закристаллизоваться (см. Аморфное состояние). Все в-ва в природе (за исключением гелия жидкого) затвердевают при атм. давлении и темп-ре Т>0 К.

Исследования св-в Т. т. объединились в большую область — физику Т. т., развитие к-рой стимулируется потребностями техники. Ок. половины физиков мира работают в области физики Т. т., почти половина всех науч. физ. публикаций относится к исследованию Т. т. Физика Т. т.— источник новых материалов, новые физ. идеи, рождающиеся в физике Т. т., проникают в ядерную физику, астрофизику, биофизику и др. области науки.

Св-ва Т. т. можно объяснить, исходя из знания его атомно-мол. строения и законов движения его атомных (атомы, ионы, молекулы), а также субатомных, (эл-ны, ат. ядра) ч-ц

734




Накопление и систематизация данных о макроскопич. св-вах Т. т. (металлов, минералов и др.) началось с 17 в. Был установлен ряд эмпирич. законов, описывающих воздействие на Т. т. механич. сил, света, электрич. и магн. полей и т. д. Были открыты Гука закон (1660), Дюлонга и Пти закон (1819), Ома закон (1826), Видемана Франца закон (1853) и др. В 1-й пол. 19 в. были созданы осн. концепции упругости теории, для к-рой характерно представление о Т. т. как о сплошной среде.

Представление о кристалле как совокупности атомов, упорядоченно расположенных в пр-ве и удерживаемых около положения равновесия силами вз-ствия, было в окончат. виде сформулировано франц. учёным О. Браве в 1848. Однако развитие этой идеи восходит ещё к работе Ньютона (1686), в к-рой рассчитана скорость звука в цепочке упруго связанных ч-ц, и продолжалось Бернулли (1727), Коши (1830) и др. В 1890—91 Е. С. Фёдоров доказал возможность существования 230 пространств. групп симметрии кристаллов — 230 вариантов упорядоченного расположения ч-ц в Т. т.

В 1912 нем. физики М. фон Лауэ, П. Книппинг и В. Фридрих открыли дифракцию рентг. лучей на кристаллах, окончательно утвердив представление о Т. т. как упорядоченной дискретной структуре. В 1913 англ. учёный У. Л. Брэгг и Г. В. Вульф установили соотношение, связывающее период крист. решётки, длину волны рентг. излучения и направления дифракц. максимумов (см. Брэгга Вульфа условие). На основе этого были разработаны методы эксперим. определения расположения атомов в кристаллах и измерения межат. расстояний, что положило начало рентгеновскому структурному анализу и др. дифракц. методам исследования атомно-крист. структуры Т. т. В 1927 амер. физики К. Дж. Дэвиссон и Л. X . Джермер наблюдали дифракцию эл-нов на кристалле (см. Электронография). В дальнейшем была обнаружена дифракция нейтронов на кристалле (см. Нейтронография).

Атомы в твёрдом теле. Межатомные связи. Структурными единицами Т. т. служат атомы, молекулы или ионы. Крист. структура Т. т. зависит от сил, действующих между ат. ч-цами. Одни и те же ат. ч-цы могут образовывать разл. структуры — серое и белое олово, графит и алмаз и т. д. (см. Полиморфизм).

Изменяя расстояние между атомами с помощью внеш. давления, можно существенно изменить крист. структуру и св-ва Т. т. Обнаружено большое число разл. крист. модификаций, образующихся при высоких давлениях. Многие ПП под давлением переходят в металлич. состояние (S при 120 000 атм становится металлом). Когда благодаря внеш. давлению объём, приходящийся на 1 атом, становится меньше обычного ат. размера, атомы теряют свою индивидуальность и в-во превращается в сильно сжатую электронно-ядерную плазму. Исследование такого состояния в-ва важно, в частности, для понимания структуры звёзд.

Изменение структуры и св-в Т. т. (фазовые переходы) происходит также при изменении темп-ры, под действием магн. полей и др. внеш. воздействий.

По типам связи Т. т. делят на пять классов, каждый из к-рых характеризуется своеобразным пространств. распределением эл-нов. 1) В ионных кристаллах (NaCl, KCl и др.) осн. силы притяжения, действующие между ионами,— электростатические. 2) В кристаллах с ковалентной связью (алмаз, Ge, Si) валентные эл-ны соседних атомов обобществлены. Кристалл представляет собой как бы огромную молекулу. 3) У большинства металлов энергию связи обусловливает коллективное вз-ствие подвижных эл-нов с ионным остовом (металлич. связь). У нек-рых металлов (напр., у переходных) важна также ковалентная связь, осуществляемая эл-нами незаполненных внутр. оболочек. 4) В мол. кристаллах молекулы связаны слабыми электростатич. силами (ван-дер-ваальсовы силы), обусловленными динамич. поляризацией молекул (см. Межмолекулярное взаимодействие). 5) В кристаллах с водородными связями каждый атом водорода связан силами притяжения одновременно с двумя др. атомами. Водородная связь вместе с электростатич. притяжением дипольных моментов молекул воды определяет св-ва воды и льда. Классификация по типам связи условна, во многих в-вах наблюдается комбинация разл. типов связи (см. Кристаллохимия).

Хотя силы, действующие между ат. ч-цами в Т. т. весьма разнообразны, их источником служит электростатич. притяжение и отталкивание. Образование из атомов и молекул устойчивых Т. т. показывает, что силы притяжения на расстояниях .~10-8 см уравновешиваются силами отталкивания (они имеют квантовомеханич. природу и быстро спадают с расстоянием). В ряде случаев можно рассматривать ат. ч-цы как тв. шары и характеризовать их атомными радиусами. Знание сил вз-ствия позволяет получить уравнение состояния Т. т.

Все Т. т. при достаточно высокой темп-ре плавятся или возгоняются, исключение составляет твёрдый гелий, к-рый (под давлением) плавится при понижении темп-ры. Подводимая к телу в процессе плавления теплота тратится на разрыв межат. связей. Темп-ра плавления Тпл у Т. т. разной природы различна (у мол. водорода -259,1 °С, у вольфрама 3410±20° С, у графита более 4000 °С).

Механические свойства. Роль дефектов кристаллической структуры.

Механич. св-ва Т. т. определяются силами связи, действующими между его структурными ч-цами. Многообразие этих сил приводит к разнообразию механич. св-в: одни Т. т. пластичны, другие — хрупки. Обычно металлы более пластичны, чем диэлектрики. С повышением темп-ры пластичность обычно увеличивается. При небольших нагрузках у всех Т. т. наблюдается упругая деформация. Прочность кристалла не соответствует силам связи между атомами. В 1922 А. Ф. Иоффе объяснил низкую прочность, наблюдаемую у реальных кристаллов, влиянием макроскопич. дефектов (трещин, надрезов) на их поверхности (эффект Иоффе). В 1933 Дж. Тейлор, Э. Орован (США) и М. Поляни (Великобритания) сформулировали понятие о дислокациях. Оказалось, что при больших механич. нагрузках реакция кристалла зависит от отсутствия или наличия дислокаций и др. линейных дефектов крист. решётки. Именно дислокации в большинстве случаев определяют пластичность Т. т. Механич. св-ва Т. т. зависят от его обработки, вносящей или устраняющей дефекты. В 1926 Я. И. Френкель обратил внимание на наличие в реальном кристалле точечных дефектов решётки (вакансий и междоузлий) и указал на их роль в процессах диффузии в Т. т.

Динамика кристаллической решётки. Колебат. характер движения атомов и ионов Т. т. сохраняется вплоть до темп-ры плавления Тпл. Даже при Т=Тпл ср. амплитуда колебаний атомов значительно меньше межат. расстояний, а плавление обусловлено тем, что термодинамич. потенциал жидкости при Т>Тпл меньше термодинамич. потенциала Т. т.

Динамич. теория крист. решёток была разработана в нач. 20 в. Она учитывает квант. представления. В 1907 А. Эйнштейн с помощью модели кристалла как совокупности квант. гармонич. осцилляторов одинаковой частоты объяснил наблюдаемое падение теплоёмкости Т. т. при понижении темп-ры. Этот факт находился в противоречии с законом Дюлонга и Пти. Более совершенная динамич. теория крист. решётки как совокупности связанных квант. осцилляторов разл. частот была построена голл. физиком П. Дебаем (1912), затем нем. физиком М. Борном и Т. Карманом (1913, США), а также австр. физиком Э. Шрёдингером (1914) в форме, близкой к современной. Квант. колебат. движения атомов, составляющих крист. решётку, привело к понятию фонона (И. Е. Тамм, 1929) и позволило описывать тепловые свойства Т. т. как свойства газа квазичастиц — фононов (см. ниже).

735



Динамич. теория крист. решётки позволяет объяснить упругие св-ва Т. т., связав значения статич. модулей упругости с силовыми константами. Тепловые св-ва: температурный ход теплоёмкости (см. Дебая закон теплоёмкости), коэфф. теплового расширения (Грюнайзена закон) и теплопроводности — объясняются как результат изменения с темп-рой числа фононов и длины их свободного пробега. Оптич. св-ва, в частности поглощение фотонов ИК излучения, объясняются резонансным возбуждением оптич. ветви колебаний крист. решётки.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):